1. UV Light and UV Curing

- Why Cure with UV?
- Electromagnetic Spectrum and the Wavelengths DYMAX Utilizes
- Advantages of Curing with UV AND Visible Light
- Wavelengths, Intensity, and Energy
- Shortwave, Longwave, and Visible Light
- Four Types of UV Curing Systems
- The UV Curing Process
Why Cure with UV?

- Each customer will perceive and realize a unique set of benefits from UV curing, but there are three that customers consistently cite:
 - Fast Cures
 - One Component
 - Environmentally and Worker Friendly
Electromagnetic Spectrum

Shorter wavelengths contain higher energy.
Advantages of Curing with Both UV AND Visible Light

- Faster
 - UV + Visible results in 50-100% faster cures
- Deeper
 - \(\frac{1}{4}'' \) to \(\frac{1}{2}'' \) is typical with UV + Visible
- Through UV-blocking substrates
 - We can now cure through UV blocked, but visibly transparent substrates like some polycarbonates and acrylics, for example.
Wavelengths - Intensity - Energy

- **Wavelengths**
 - Defined as the distance between crests of a wave. In the UV region, these wavelengths are typically measured in nanometers (one billionth of a meter).

- **Intensity**
 - Energy reaching an area per time. Often measured in mW/cm² or W/cm².

- **Energy**
 - Total energy reaching a area over a period of time. Often measured in mJ/cm² or J/cm².
Shortwave – Longwave - Visible

<table>
<thead>
<tr>
<th></th>
<th>Contains</th>
<th>Primary Emission Spectra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shortwave (H)</td>
<td>Mercury</td>
<td>210-315 nm</td>
</tr>
<tr>
<td>Longwave (D)</td>
<td>Mercury and Metal Halide</td>
<td>350-400 nm</td>
</tr>
<tr>
<td>Visible (V)</td>
<td>Mercury and Gallium</td>
<td>400-450 nm</td>
</tr>
</tbody>
</table>
DYMAX UV Curing Equipment

- **UV Spot Lamps**
 - Highest intensity, small area (up to 0.5” diameter)

- **UV Flood Lamps**
 - Moderate Intensity, large area (5” x 5” or 8” x 8”)

- **UV Conveyors**
 - Moderate to High Intensity

- **Radiometers**
 - Measure UV Intensity
The UV Curing Process

- Typical Cure Speeds
 - 1 to 30 second UV cures are typical

- Intensity
 - Higher Intensity = Faster Cures

- Substrates and Distance
 - Substrates and Distance Affect Intensity

- Depth of Cure
 - Maximum depth of cure of ¼” to ½” is typical
The UV Curing Process

- **Shadow Curing**
 - Curing will not propagate into “shadowed” areas. Secondary cure mechanisms are available for curing in these areas.

- **Cure after exposure?**
 - Acrylates stop curing immediately after exposure.
 - Cationics continue to cure for 24 hours after exposure.
The UV Curing Process (Cont.)

- **Oxygen Inhibition**
 - The surfaces of some UV materials will remain tacky after exposure to UV light. Often this tackiness can be minimized or eliminated by using a …
 - Higher intensity
 - Longer cure
 - Inert gas blanket (like nitrogen)
 - Another UV curing material
The UV Curing Process (Cont.)

- **Overexposure**
 - UV curing resins can typically tolerate over-exposure from 100% to 500% without any degradation.

- **Operating Intensity versus Validation Intensity**
 - A UV curing process should be operated at a higher intensity/energy than the validation intensity/energy to allow for intensity degradation.
The UV Curing Process (Cont.)

- **Multiple Parts**
 - Sometimes a flood lamp, although slower curing, cures more efficiently than a faster curing spot lamp. For example, which is more efficient:
 - 10 parts cured together for 30 seconds with a flood
 - 10 parts cured 5 seconds each with a spot

- **Multiple Exposures**
 - Multiple in-line curing stations can be used. For example:
 - Two 5 second exposures are essentially as effective as one 10 second exposure.