BlueWave® MX-150™ User Guide

Next-Generation LED Spot-Curing System

- Instructions for Safe Use
- Setup and Operation
- Maintenance
- Ordering Spare Parts and Accessories
About Dymax

UV/Visible light-curable adhesives. Systems for light curing, fluid dispensing, and fluid packaging.

Dymax manufactures industrial adhesives, light-curable adhesives, epoxy resins, cyanoacrylates, and activator-cured adhesives. We also manufacture a complete line of manual fluid dispensing systems, automatic fluid dispensing systems, and light-curing systems. Light-curing systems include LED light sources, spot, flood, and conveyor systems designed for compatibility and high performance with Dymax adhesives.

Dymax adhesives and light-curing systems optimize the speed of automated assembly, allow for 100% in-line inspection, and increase throughput. System designs enable stand-alone configuration or integration into your existing assembly line.

Please note that most dispensing and curing system applications are unique. Dymax does not warrant the fitness of the product for the intended application. Any warranty applicable to the product, its application, and use is strictly limited to that contained in the Dymax standard Conditions of Sale. Dymax recommends that any intended application be evaluated and tested by the user to ensure that desired performance criteria are satisfied. Dymax is willing to assist users in their performance testing and evaluation by offering equipment trial rental and leasing programs to assist in such testing and evaluations.
Contents

Introduction .. 5
 Introduction to the User Guide ... 5
 Where to Get Help .. 5

Safety .. 6
 General Safety Considerations ... 6
 Safety Symbol Index .. 6
 Specific Safety Considerations ... 7
 Dymax UV Light-Curing System Safety Considerations ... 7

Product Overview .. 9
 Description of the *BlueWave MX-150* ... 9
 Features & Benefits ... 11
 Front Control Panel .. 12
 Back Panel ... 13

Unpacking ... 14
 Parts Included ... 14

System Setup ... 14
 System Connections ... 14

Modes of Operation ... 15
 Manual Mode ... 15
 Timer Mode .. 16
 PLC (Programmable Logic Controller) Operation ... 16

Operation ... 20
 Control Screen ... 20
 Irradiation ... 22
 Saving Programs .. 22

System Settings ... 23
 Language Settings .. 24
 Volume Settings .. 24
 Brightness Settings .. 25
 User Settings/Boot Modes ... 25

System Information ... 26
Introduction

Introduction to the User Guide

This guide describes how to set up, use, and maintain the BlueWave® MX-150™ LED Spot-Curing System safely and efficiently.

Intended Audience

This user guide is meant for experienced process engineers, technicians, and manufacturing personnel. If you are new to high-intensity LED light sources and do not understand the instructions, contact Dymax Application Engineering for answers to your questions before using the equipment.

Where to Get Help

Dymax Customer Support and Application Engineering teams are Europe, Monday through Friday, from 8:00 a.m. to 5:30 p.m. Central European Time. You can also email Dymax Europe GmbH at info_de@dymax.com. Contact information for additional Dymax locations can be found on the back cover of this user guide.

Additional resources are available to ensure a trouble-free experience with our products:

- Detailed product information on www.dymax.com
- Dymax adhesive product data sheets (PDS) on our website
- Material safety data sheets (MSDS) provided with shipments of Dymax adhesives
Safety

WARNING! If you use this LED light source without first reading and understanding the information in this user guide, injury can result from exposure to high-intensity light. To reduce the risk of injury, please read and ensure you understand the information in this user guide before assembling and operating the Dymax LED light source.

To use the BlueWave MX-150 system safely, it must be set up and operated in accordance with the instructions given by Dymax. Using the system in any other manner will impair the protection of the system. Dymax assumes no liability for any changes that may impair the protection of the BlueWave MX-150 system.

General Safety Considerations

All users of Dymax LED light sources should read and understand this user guide before assembling and using the system.

To learn about the safe handling and use of light-curable formulations, obtain and read the MSDS for each product. Dymax includes an MSDS with each adhesive sold. In addition, fluid product MSDS can be requested through our website.

Safety Symbol Index

The following symbols are displayed on the BlueWave MX-150. Please see below for their meanings.

- Refer to Equipment Manual Before Operating Equipment
- Warning! Use Caution When Operating Equipment
- Eye Protection Required
- Product Contains an Electrostatic Sensitive Device (EST) Internally
- WEEE Directive (Waste electrical and electronic equipment must be disposed of or recycled at the nearest collection facility)
- Warning! UV Light Hazard (Do not look directly at light)
- Complies with All Listed European Directives
Specific Safety Considerations

The BlueWave MX-150 is designed to maximize operator safety and minimize exposure to light-curing energy. To use the unit safely, it must be set up and operated in accordance with the instructions in this user guide. Please also read and understand the safety considerations unique to LED-curing systems as described below.

WARNINGS! Looking directly at the high-intensity light emitted by the BlueWave MX-150 can result in eye injury. To prevent eye injury, never look directly at the end of the high-intensity head and always wear protective goggles. To avoid accidental exposure, always point the emitter and/or light guide away and at the curing substrate.

The controller is cooled by natural convection. If you block the air flow from the controller, equipment damage and malfunction can result. To prevent damage and malfunction, ensure adequate space around controller vents to allow the free flow of air. Typically, 1.5 in (38 mm) of space around all sides of the controller is sufficient.

Dymax UV Light-Curing System Safety Considerations

Operators must understand these three concepts to use the LED light source safely: UV exposure, high-temperature surfaces, and bright, visible light.

UV Exposure

Figure 1. UV Spectrum

![UV Spectrum Diagram]

Standard Dymax UV light-curing systems have been designed primarily to emit UVA and Visible energy (Figure 1). Depending on the type of LED head used, the energy emitted from the BlueWave MX-150 can either be in the upper end of the UVA portion of the spectrum...
(PrimeCure™ & RediCure™) or in the lower portion of the visible spectrum (VisiCure®). UVA energy is generally considered the safest of the three UV ranges: UVA, UVB, and UVC. Although OSHA does not currently regulate UV-light exposure in the workplace, the American Conference of Governmental Industrial Hygienists (ACGIH) does recommend Threshold Limit Values (TLVs) for ultraviolet light.

The strictest interpretation of the TLV (over the UVA range) for workers’ eyes and skin allows continuous exposure up to 1 mW/cm² (intensity). Unless you are placing bare hands into the curing area, it is unusual to exceed these limits. To put 1 mW/cm² limit into perspective, a cloudless summer day will typically exceed 3 mW/cm² of UVA light, and also include the more dangerous UVB light (primarily responsible for sun tans, sun burns, and skin cancer).

Checking the Workstation

The human eye cannot detect "pure" UV light, only visible light. A radiometer should be used to measure stray UV light to confirm the safety of a UV light-curing process. A workstation that exposes an operator to more than 1 mW/cm² of UVA continuously should be redesigned.

Protecting Operators

Light-curing technology can be a regulatory compliant, "worker-friendly" manufacturing process when the proper safety equipment and operator training is utilized. There are two ways to protect operators from UV exposure: shield the operator and/or shield the source.

Shield the Operator

UV-Blocking Eye Protection — UV-blocking eye protection is recommended when operating UV light-curing systems. Both clear and tinted UV-blocking eye protection is available from Dymax.

UV-Blocking Skin Protection — Opaque, UV-blocking clothing, gloves, and full-face shields are recommended when skin may potentially be exposed to UV light.

Shield the Source of UV

Any substrate that blocks UV light can be used as a shield to protect workers. The following materials can be used to create simple shielding structures:
Rigid Plastic Film — Transparent or translucent/UV-blocking plastics (typically polycarbonate or acrylic) are commonly used to create shielding where some level of transparency is also desired.

Flexible Film — Translucent UV-blocking, flexible urethane films can be used to quickly create workstation shielding. This UV-blocking, flexible urethane film is available from Dymax, call for assistance.

High-Temperature Surfaces
Surfaces exposed to high-intensity curing lights may rise in temperature. The intensity, distance, exposure time, cooling fans, and composition of the surface can all affect the rise in surface temperature. In some cases, exposed surfaces can reach temperatures capable of producing a burn or causing damage to a substrate. In these cases, operators should try to maintain a cooler surface temperature or they should have the appropriate protection/training to avoid injury from the heat. No infrared radiation is produced by these LED systems, so surface temperatures will be lower than with conventional lamp systems. Empirical testing should be used to verify the exact temperature rise in each application.

Bright Visible Light
The bright visible light energy emitted by curing systems can cause eyestrain if proper eye protection or shielding is not used. The use of tinted eye protection and/or opaque/ tinted shielding can be utilized to reduce eyestrain and address this concern.

Product Overview

Description of the BlueWave MX-150
The BlueWave MX-150 high-intensity spot-curing system features all the benefits of LED-curing technology in a smaller, more versatile unit. This system is comprised of a power supply, a controller with an easy-to-use control interface, and an emitter. Emitters are available in 365, 385, and 405 nm, and can be used with a lightguide if needed.

The system’s emitters can be used as hand-held units or integrated into an automated manufacturing system allowing for maximum application flexibility. Their output intensity levels can also be adjusted from 10% to 100% to meet process and adhesive requirements. The BlueWave MX-150 is rated for continuous operation. However, if the internal temperature of
the system exceeds the maximum safe operating temperature limits, each emitter contains a thermal sensor that will shut the unit down to protect the components of the emitter.

Figure 2. Main Components of a BlueWave MX-150
Features & Benefits

The Dymax *BlueWave MX-150* is engineered for precise performance and long service life. Key features include:

<table>
<thead>
<tr>
<th>Features</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexible mounting options</td>
<td>Adaptable to a variety of process and fixture scenarios</td>
</tr>
<tr>
<td>PLC interface</td>
<td>Easily incorporated into automated systems</td>
</tr>
<tr>
<td>100% duty cycle capability</td>
<td>Highest throughput (exposure cycles “at the speed of light”)</td>
</tr>
<tr>
<td>No mechanical shutter</td>
<td>Instant on/off/no warm up period</td>
</tr>
<tr>
<td>Intensity output adjustment (10% to 100%)</td>
<td>Superior accuracy over “closed-loop feedback” or auto-adjusting units</td>
</tr>
<tr>
<td></td>
<td>Optimum process control</td>
</tr>
<tr>
<td>LED emitters available in 365, 385, or 405 nm wavelengths</td>
<td>Compatible with a variety of UV and visible light-curable materials, including Dymax materials for fewer re-qualifications</td>
</tr>
<tr>
<td></td>
<td>Wavelength flexibility allows co-optimization of adhesive and curing system for optimal cure</td>
</tr>
<tr>
<td></td>
<td>Units can be custom configured to your curing requirements</td>
</tr>
<tr>
<td>Stable LED temperature</td>
<td>Comfortable hand-held operating temperature</td>
</tr>
<tr>
<td></td>
<td>Maximized continuous operation without overheating</td>
</tr>
<tr>
<td></td>
<td>Optimizes cure time efficiency</td>
</tr>
<tr>
<td></td>
<td>Temperature monitoring assures maximum LED life</td>
</tr>
</tbody>
</table>
Front Control Panel

The front panel features the power button and a touchscreen display through which the unit can be operated.

Power Button — Press the power button to power up the controller. Press the button a second time to turn the unit off.

Figure 3. Front Control Panel
Back Panel

Power Cord Receptacle — Connection point for the power cord.

Foot Pedal Jack — Connection point for the foot pedal.

PLC Connector Terminals — Connection points for an interface with a user-supplied PLC (for remote operation).

Emitter Connector — Connection point for the system’s emitter.

Figure 4. Back Panel Controls & Connections
Unpacking

Upon arrival, inspect all boxes for damage and notify the shipper of box damage immediately. Open each box and check for equipment damage. If parts are damaged, notify the shipper and submit a claim for the damaged parts. Contact Dymax so that new parts can be shipped to you immediately.

The parts below are included in every package/order. If parts are missing from your order, contact your local Dymax representative or Dymax Customer Support to resolve the problem.

Parts Included

Controller
- Controller Base
- Power Adapter
- Power Supply
- Emitter Cable
- PLC Connector
- Power Cord
- Foot Pedal
- Safety Glasses
- BlueWave MX-150 User Guide

LED Emitter
- LED Emitter Assembly

System Setup

System Connections

1. Attach the Power Cord to the Power Cord Receptacle located on the unit’s back panel (Figure 4).

2. Plug the opposite end of the Power Cord into an appropriate AC outlet. The unit is now powered and ready to be turned on with the On/Off Switch located on the front of the unit (Figure 3).

3. At the top of the Controller’s Rear Panel, there is a connector labeled “Emitter” (Figure 4). Connect one end of the Emitter Cable to this connector and the other end to the Emitter.
4. If using the optional foot pedal, plug it into the foot pedal jack on the rear panel of the controller.

If you are using a PLC - There are input and output PLC Connection Terminals that can be used to integrate the unit to an automated assembly line. The input connections consist of PLC Enable, Emitter Interlock, Light Shield Sensor, Program/Analog, and LED On. The unit normally has high logic levels (24V) and looks for a low signal (0V) input. The 24VDC is supplied internally allowing use of a simple contact closure such as a switch or relay to actuate the inputs.

The output PLC connection terminals consist of System Status, LED status and Reserved. These output signals are 24VDC inactive and 0 Volts active.

The Analog intensity input is a 0 – 10 Volt input that controls the LED intensity. This function is active when the Prog/Analog and PLC Enable inputs are activated.

Refer to
5. Your unit is now ready for operation.

Modes of Operation

The system has three basic modes of operation: manual, timer, and PLC.

Manual Mode

In manual mode, the LED is energized when the foot pedal is pressed, passing UV light through the delivery optics, and de-energized when the foot pedal is released. The LED may also be energized by pressing the run/stop button located in the center of the touchscreen user interface. The LED will be energized to the power level set through the touchscreen user interface. Pressing the run/stop button during the curing cycle will de-energized the LED.

When manual mode is selected, the time indicator will be initialized to zero. The time display will count up during an exposure and display the total elapsed time at the end of the exposure to allow the user to save the time and power values if desired. Starting a new manual exposure will reset the time value to zero immediately and proceed to count up.

Timer Mode

In timer mode, the LED is energized for a specific time period each time the foot pedal or run button is pressed. The specific time is set by adjusting the timer’s value through the touchscreen user interface. Pressing the foot pedal or run button starts the timer and energizes the LED. When the timer counts down to zero, the LED is de-energized, and no curing energy is emitted. The timer is reset to the pre-set value, and the system is immediately ready to run another exposure cycle. The LED can be de-energized at any time during the curing cycle by simply pressing the run/stop button.
PLC (Programmable Logic Controller) Operation

When in PLC mode, an external PLC can control the unit. The PLC provides input signals to the BlueWave MX-150 to control the on/off signals and intensity of the LED. The PLC monitors the status of the system by reading output signals provided by the unit.

The PLC is typically programmed to start other machinery when the BlueWave MX-150 becomes ready, or something starts the unit when other machinery is ready. The input and output signals are present on a special connector on the back of the unit.

NOTE: A ferrite will be required on the PLC (0-10V) analog input cable to reduce noise.

Figure 5. PLC Mode Screen

<table>
<thead>
<tr>
<th>PLC MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUTS</td>
</tr>
<tr>
<td>LED ENABLE</td>
</tr>
<tr>
<td>EMITTER INTLK</td>
</tr>
<tr>
<td>LIGHT SHLD SENSE</td>
</tr>
<tr>
<td>PROG-EXT</td>
</tr>
<tr>
<td>LED ON</td>
</tr>
<tr>
<td>LED INTENSITY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OUTPUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEM HEALTHY</td>
</tr>
<tr>
<td>LED INTENSITY</td>
</tr>
</tbody>
</table>

Figure 6. PLC Inputs & Outputs
Table 1. PLC Inputs and Outputs

<table>
<thead>
<tr>
<th>Signal Name / Description</th>
<th>Isolated Inputs/outputs</th>
<th>Connector-Pin</th>
<th>Signal Level</th>
<th>Active</th>
<th>Inactive</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLC ENABLE</td>
<td>IN</td>
<td>J5-1</td>
<td>0 VDC</td>
<td></td>
<td>24 VDC</td>
</tr>
<tr>
<td>Asserted: Unit enters PLC mode and displays the PLC input status screen. The touch screen input is ignored.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deasserted: All dedicated PLC inputs are ignored and the PLC outputs will remain active.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMITTER INTERLOCK</td>
<td>IN</td>
<td>J5-3</td>
<td>0 VDC</td>
<td></td>
<td>24 VDC</td>
</tr>
<tr>
<td>Asserting this signal enables the emitter.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIGHT SHIELD SENSE</td>
<td>IN</td>
<td>J5-5</td>
<td>0 VDC</td>
<td></td>
<td>24 VDC</td>
</tr>
<tr>
<td>Asserted: The LED will be enabled (able to accept either LED ON IN or FOOT PEDAL IN).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deasserted: The LED will be disabled.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROG/ANALOG</td>
<td>IN</td>
<td>J5-7</td>
<td>0 VDC</td>
<td></td>
<td>24 VDC</td>
</tr>
<tr>
<td>Asserted: The external analog intensity input (LED_INTENSITY_IN) will be active.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deasserted: The internal programmed time/power settings will be used.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LED ON IN</td>
<td>IN</td>
<td>J5-9</td>
<td>0 VDC</td>
<td></td>
<td>24 VDC</td>
</tr>
<tr>
<td>Manual operation: The LED turns on while the signal is active.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatic operation: The LED turns on for the programmed time duration upon signal activation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The timed cycle must complete before another signal activation is recognized.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User SIGNAL GND</td>
<td>ISO_2</td>
<td>J5-2, 4, 6, 8 & 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User signal ground reference for J5 input signals.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LED INTENSITY IN</td>
<td>IN</td>
<td>J6-1</td>
<td>0 to 10 VDC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog signal applied to this input to control the LED intensity.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
User SIGNAL GND
User signal ground reference for J6 input signal.

<table>
<thead>
<tr>
<th>ISO_1</th>
<th>J6-2</th>
</tr>
</thead>
</table>

FOOT PEDAL JACK - TIP
Manual operation: LED turns on for the duration of the switch closure.

Automatic operation: LED turns on for the programmed time duration with the switch closure.

The timed cycle must complete before another switch closure transition is recognized.

<table>
<thead>
<tr>
<th>IN</th>
<th>J7-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch closure (Pedal depressed)</td>
<td></td>
</tr>
<tr>
<td>Switch open (Pedal not depressed)</td>
<td></td>
</tr>
</tbody>
</table>

FOOT PEDAL JACK - SLEEVE
User signal ground reference for J7 input signal.

<table>
<thead>
<tr>
<th>AGND</th>
<th>J7-2</th>
</tr>
</thead>
</table>

SYSTEM HEALTHY OUT
Asserted: Indicates the system is healthy.

Deasserted: Indicates that the system has one or more operational problems.

<table>
<thead>
<tr>
<th>OUT</th>
<th>J8-1</th>
<th>0 VDC</th>
<th>24 VDC</th>
</tr>
</thead>
</table>

LED ON OUT
Indicates LED is on. The LED "On" state is determined by verifying current flow through the LED.

<table>
<thead>
<tr>
<th>OUT</th>
<th>J83</th>
<th>0 VDC</th>
<th>24 VDC</th>
</tr>
</thead>
</table>

User SIGNAL GND
Signal ground reference for J8 output signal.

<table>
<thead>
<tr>
<th>ISO_2</th>
<th>J8-2, 4</th>
</tr>
</thead>
</table>

Note: The 24VDC (+/- 10%) for PLC function is supplied internally in the BlueWave MX-150 and does not require an external supply. This allows the use of simple contact closure devices such as switches, and relays to activate the inputs.
Operation

To operate the system, first verify that all Connectors are correctly plugged into the rear panel of the unit (See System Connections, pg. 145 for more details). When all Connectors are properly plugged in, press the Power Button on the front panel of the unit. The system is now ready for use.

Upon startup of the unit, an intro screen will appear. After 4 seconds, the control screen should appear in the display. It will be in administrator mode the first time the unit is started.

Control Screen

The control screen is used to set up and run curing cycles. This screen allows users to switch back and forth between administrator and production modes as well as between timer and manual operating modes. It is also where the cycle’s time and power settings are dialed in.

![Figure 7. Control Screen Components](image)

Information Button — Loads the system information screen. Refer to “System Information” on page 26 for more information.
Administration/Production Mode Toggle — Switches between administration and production modes. A password will be required to enter administrator mode. Refer to User Settings/Boot Modes on page 26 for more information.

The production screen layout is identical to the administrator screen. The time, power and mode settings reflect the administrator settings and cannot be altered. User operational controls are limited to “Run/Stop”, “Volume” and “Brightness” (see Settings screen). Program(s) names will be displayed along with the Emitter type but the ability to save and load Program(s) will be disabled.

Settings Button — Loads the settings screen brightness, and other user settings can be adjusted. Refer to “System Settings” on page 24 for more information.

Irradiating Time — The Irradiating time is displayed in this field.

When in timed mode, time is entered by touching the display field which in turn brings up a numerical keypad for entry. The entry range is 0.1 – 999 seconds. From 0.1 – 30 seconds the adjustment is made in 0.1 second increments and from 30 – 999 seconds the adjustment is made in 1 second increments.

When in manual mode, time is displayed and entry is not available.

Power Button — The Irradiating power level is displayed in this field. The power level is entered by touching the field which in turn brings up a numerical keypad for entry. The power range is 10 to 100% in increments of 1%.

Run/Stop Cycle Button — Initiates/terminates an exposure. The button also functions as an indicator which informs the user that the irradiator is emitting UV light.

Operation Mode — Select from timer or manual mode. For more information on operating modes, refer to “Modes of Operation” on page 15.

Alarms Icon — Alerts the user that there is an error on page 27 for more information.

Emitter Type — Displays the type of emitter connected to the controller and the wavelength that it provides. Emitters are available in three configurations: RediCure™ 365 nm, PrimeCure™ 385 nm, and VisiCure® 405 nm.
Program Button — Loads a list of saved curing programs to choose from.

Irradiation

To run a curing cycle in manual mode:

1. Input the power value by pressing the respective field. The time field will be disabled.

2. Press the Run Button or Foot Pedal to start the irradiation. The timer field will begin counting. The irradiation will terminate when the Stop Button is pressed. Foot Pedal reactivation will not terminate the cycle.

To run a curing cycle in timer mode:

1. Input the time and power values by pressing on each respective field or by loading a previously saved program. To load a curing program, press the Program Button on the bottom of the screen. A list of available programs will appear. Select the appropriate one and press “LOAD”. The program will load and you will be brought back to the Control Screen.

2. Press the Run Button or Foot Pedal to start the timed irradiation. The irradiation will terminate when the count reaches zero. The timed exposure may be aborted at any time by pressing the Stop Button. Foot Pedal reactivation will not terminate the cycle.

 At the conclusion of the timed exposure, the time value will be automatically reloaded in preparation for the next activation.

Saving Programs

The current power and time settings (program) may be saved to internal memory by highlighting “New Name” and pressing “SAVE”, which will bring up a QWERTY keyboard for program name entry. The user may also save the current settings by selecting an existing program name and pressing “SAVE” to overwrite the previously saved program. Previously saved programs may be recalled by highlighting the desired program name and pressing “LOAD”. The Back button will return the user to the previous screen.
System Settings

System settings allow the user to change the language, volume, brightness, and user functions. To enter this menu press the Settings Button located in the upper right hand corner of the Production or Admin Screens.
Language Settings

The BlueWave MX-150 is currently available in English. The Back Button will return the user to the previous screen.

Volume Settings

The volume of the Alarm Annunciator can be adjusted using the Slider Control on the Volume Screen. Moving the Slider upward towards “MAX” increases the volume, while moving the Slider downward towards “MIN” decreases it. The volume can also be muted by pressing the Mute Box. A check mark will appear in the Mute Box if the unit is muted.

When finished, press “DONE” to save the current settings and return to the previous screen. If you do not want to save the changes, press the Back Button and you will return to the previous screen without saving any changes.
Brightness Settings

The brightness of the LCD screen can be adjusted using the Slider Control on the Brightness Screen. Moving the Slider upwards towards “MAX” increases the brightness, while moving the Slider downward towards “MIN” decreases it.

When finished, press “DONE” to save the current settings and return to the previous screen. If you do not want to save the changes, press the Back Button and you will return to the previous screen without saving any changes.

User Settings/Boot Modes

The User Button is only available while in Admin Mode and is grayed out/inactive while in Production Mode. Pressing the User Button will load the User Screen where boot mode can be selected and the admin password may be accessed.

Administrator Boot Mode

Setting the Boot Mode to “Administrator” will cause the Controller to enter the Admin Mode immediately following power-up when the administrator password is left blank. If the password has been set, the Password Keyboard Screen will be displayed after power-up prompting the user to enter in the administrator password.
Pressing the “DONE” will save the current settings and return to the previous screen. The Back Button will return the user to the previous screen without saving any changes.

The administrator password may be accessed by pressing the Password Button. The password is entered and confirmed in the Password Screen via the QWERTY Keyboard. The password fields will accept an alpha-numeric password of up to 12 characters in length.

Production Boot Mode

Setting Boot Mode to “Production” will cause the Controller to enter Production Mode immediately after power-up; no password will be required.

System Information

The System Information Screen can be accessed by pressing the Information Button in the top left corner of the Production or Admin Screens. Information such as the controller model number and the serial number, firmware revision, and run hours for the Controller and Emitter can be found here. You can also access the Alarm Screen.

Figure 15. Information Button

Pressing the Information Button will display the System Information Screen.

Figure 16. Information Screen

- **MX-150™ CONTROLLER**
 - SERIAL #
 - FIRMWARE REVISION

- **VisiCure® Emitter**
 - SERIAL #
 - FIRMWARE REVISION

- **RUN HOURS**
 - Emitter
 - Controller

- **ALARMS**
Troubleshooting & Maintenance

Product Cleaning

Product cleaning is limited to wiping the product with a damp cloth. Do not soak. Isopropanol Alcohol or household cleaners can be used for cleaning the product.

Alarms

When the system malfunctions, a red alarm icon will appear, along with an audible beep, on the Production or Admin Screen signaling that there is a problem. To check the alarm codes, access the Information Screen by pressing the Information Button in the top left hand corner of the screen. When inside the Information Screen, press the red Alarm Button on the bottom of the screen. Errors codes will populate the Alarm Screen. Alarms can be reset by pressing “RESET ALARMS”.

Figure 17. Alarm Icon

Figure 18. Alarms Screen
Alarm Codes

User viewable alarms are generated and displayed on the Alarm Screens. The user viewable alarms include: lightguide not installed, LED over-temperature, and controller over-temperature. These alarms can be reset; however, the alarm will reoccur if the alarm condition persists. The LED will not emit UV energy without the lightguide installed. Three digit error codes will also be displayed if a fault occurs. Contact Dymax Customer Support if any of these conditions occur.
Spare Parts and Accessories

<table>
<thead>
<tr>
<th>Item</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal Protection Equipment</td>
<td></td>
</tr>
<tr>
<td>Protective Goggles — Green</td>
<td>9162044</td>
</tr>
<tr>
<td>Protective Goggles — Gray (standard model included with unit)</td>
<td>35285</td>
</tr>
<tr>
<td>Emitters</td>
<td></td>
</tr>
<tr>
<td>VisiCure</td>
<td>42338</td>
</tr>
<tr>
<td>PrimeCure</td>
<td>42337</td>
</tr>
<tr>
<td>RediCure</td>
<td>42336</td>
</tr>
<tr>
<td>Stands</td>
<td></td>
</tr>
<tr>
<td>Emitter Mounting Stand</td>
<td>42390</td>
</tr>
<tr>
<td>Three-Sided Acrylic Shield</td>
<td>41395</td>
</tr>
<tr>
<td>Emitter Holder Assembly Bracket</td>
<td>42426</td>
</tr>
<tr>
<td>Power Cords</td>
<td></td>
</tr>
<tr>
<td>Power Cord, North America</td>
<td>35255</td>
</tr>
<tr>
<td>Power Cord, China</td>
<td>40542</td>
</tr>
<tr>
<td>Key System Components</td>
<td></td>
</tr>
<tr>
<td>AC Power Supply</td>
<td>42144</td>
</tr>
<tr>
<td>Foot Pedal</td>
<td>41713</td>
</tr>
<tr>
<td>Interconnect Cable Assembly</td>
<td>42287</td>
</tr>
<tr>
<td>Accessories</td>
<td></td>
</tr>
<tr>
<td>5-mm Lightguide Simulator</td>
<td>36987</td>
</tr>
<tr>
<td>5-mm x 1,000-mm Liquid Lightguide</td>
<td>41747</td>
</tr>
<tr>
<td>Bifurcated Guide</td>
<td>41751</td>
</tr>
<tr>
<td>Adjustable Focusing Lens</td>
<td>41148</td>
</tr>
<tr>
<td>Dymax ACCU-CAL™ 50-LED Radiometer</td>
<td>40505</td>
</tr>
</tbody>
</table>
Specifications

<table>
<thead>
<tr>
<th>Property</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emitter</td>
<td>RediCure</td>
</tr>
<tr>
<td>Intensity Output</td>
<td>30 W/cm²</td>
</tr>
<tr>
<td>Output Frequency</td>
<td>365 nm</td>
</tr>
<tr>
<td>Power Supply Input</td>
<td>100-240V≈ 2.5A, 50-60Hz</td>
</tr>
<tr>
<td>LED Timer</td>
<td>0.1 to 999 seconds, max</td>
</tr>
<tr>
<td>LED Activation</td>
<td>Foot pedal, LCD touchscreen, or PLC</td>
</tr>
<tr>
<td>Cooling</td>
<td>Air cooled</td>
</tr>
<tr>
<td>Controller Dimensions</td>
<td>3.74" x 6.26" x 5.77" [9.5 cm x 15.9 cm x 7.9 cm] (W x D x H)</td>
</tr>
<tr>
<td>Emitter Dimensions</td>
<td>1.97" x 1.97" x 7.9" [5 cm x 5 cm x 20.06 cm] (W x D x H)</td>
</tr>
<tr>
<td>Weight</td>
<td>Controller: 2.6 lbs. [1.18 kg] / Emitter: 1.4 lbs. [0.64 kg]</td>
</tr>
<tr>
<td>Unit Warranty</td>
<td>1 year from purchase date</td>
</tr>
<tr>
<td>Operating Environment</td>
<td>10 to 40°C (50°F to 104°F)</td>
</tr>
</tbody>
</table>

*Measured using Dymax ACCU-CAL™ 50-LED Radiometer, in spot mode at a distance of 5 mm.

Figure 190. BlueWave MX-150 Spectral Output

![BlueWave MX-150 Spectral Output](image)
Figure 20. Dimensions - Emitter
Figure 21. Dimensions - Controller
Validation

Tests should be conducted prior to production to determine the time and light intensity required to fully cure your resin. The following approaches may be used to validate the curing process.

Set Exposure Time, Determine Intensity

Users can specify a cure time and, through empirical testing, determine the intensity required to achieve a full cure. As with any manufacturing process, it is advisable to incorporate a safety factor.

Set Intensity, Determine Exposure Time

Users can specify light intensity and, through empirical testing, determine the exposure time required to achieve a full cure. As with any manufacturing process, it is advisable to incorporate a safety factor.

Control

Process validation confirms a minimum acceptable intensity. Users can then choose to operate at full intensity (using the excess intensity as an additional safety factor) or adjust the output to a specific intensity level. To ensure consistent and repeatable process results, intensity levels should be monitored with a radiometer. This enables users to identify light intensity changes and take corrective action (either adjusting the light intensity or performing maintenance).
Warranty

From date of purchase, Dymax Corporation offers a one-year warranty against defects in material and workmanship on all system components with proof of purchase and purchase date. Unauthorized repair, modification, or improper use of equipment may void your warranty benefits. The use of aftermarket replacement parts not supplied or approved by Dymax Corporation, will void any effective warranties and may result in damage to the equipment.

IMPORTANT NOTE: Dymax Corporation reserves the right to invalidate any warranties, expressed or implied, due to any repairs performed or attempted on Dymax equipment without written authorization from Dymax. Those corrective actions listed above are limited to this authorization.
Index

Alarms, 28
Back Panel Controls, 13
Components, 9
Control Screen, 21
Curing System Safety, 7
Description, 9
Dimensions, 33
Error Codes, 29
Features & Benefits, 11
Front Panel Controls, 12
Help, 5
Irradiation, 23
 Manual Mode, 23
 Timer Mode, 23
Modes of Operation, 16
 Manual Mode, 16
 PLC, 17
 Timer Mode, 16
Operation, 21
Optional Equipment, 30
Parts List, 14
Product Overview, 9
Safety, 6
Safety of UV Light
 Bright Visible Light, 9
 High-Temperature Surfaces, 9
 UV Exposure, 7
Saving Programs, 24
Settings, 25
 Brightness, 26
 Language, 25
 Volume, 26
Setup, 15
Spare Parts and Accessories, 30
Specifications, 32
Support, 5
System Connections, 15
System Information, 28
Unpacking, 14
User Settings/Boot Modes, 27
UV Exposure, 7
UV Light Shielding, 8
Validation, 35
Warranty, 36
© 2016 Dymax Corporation. All rights reserved. All trademarks in this guide, except where noted, are the property of, or used under license by Dymax Corporation, U.S.A.

The data contained in this bulletin is of a general nature and is based on laboratory test conditions. Dymax Europe GmbH does not warrant the data contained in this bulletin. Any warranty applicable to products, its application and use is strictly limited to that contained in Dymax Europe GmbH’s General Terms and Conditions of Sale published on our homepage www.dymax.de/pdf/dymax_europe_general_terms_and_conditions_of_sale.pdf. Dymax Europe GmbH does not assume any responsibility for test or performance results obtained by users. It is the user’s responsibility to determine the suitability for the product application and purposes and the suitability for use in the user’s intended manufacturing apparatus and methods. The user should adopt such precautions and use guidelines as may be reasonably advisable or necessary for the protection of property and persons. Nothing in this bulletin shall act as a representation that the product use or application will not infringe a patent owned by someone other than Dymax Corporation or act as a grant of license under any Dymax Corporation Patent. Dymax Europe GmbH recommends that each user adequately test its proposed use and application of the products before actual repetitive use, using the data contained in this bulletin as a general guide.