Dymax BlueWave® LED Prime UVA User Guide

LED Spot-Curing System

- Instructions for Safe Use
- Setup and Operation
- Maintenance
- Ordering Spare Parts and Accessories
About Dymax

UV/Visible light-curable adhesives. Systems for light curing, fluid dispensing, and fluid packaging.

Dymax manufactures industrial adhesives, light-curable adhesives, epoxy resins, cyanoacrylates, and activator-cured adhesives. We also manufacture a complete line of manual fluid dispensing systems, automatic fluid dispensing systems, and light-curing systems. Light-curing systems include LED light sources, spot, flood, and conveyor systems designed for compatibility and high performance with Dymax adhesives.

Dymax adhesives and light-curing systems optimize the speed of automated assembly, allow for 100% in-line inspection, and increase throughput. System designs enable stand-alone configuration or integration into your existing assembly line.

Please note that most dispensing and curing system applications are unique. Dymax does not warrant the fitness of the product for the intended application. Any warranty applicable to the product, its application and use is strictly limited to that contained in the Dymax standard Conditions of Sale. Dymax recommends that any intended application be evaluated and tested by the user to insure that desired performance criteria are satisfied. Dymax is willing to assist users in their performance testing and evaluation by offering equipment trial rental and leasing programs to assist in such testing and evaluations. Data sheets are available for valve controllers or pressure pots upon request.
Contents

Introduction ... 4
 Introduction to the User Guide ... 4
 Where to Get Help .. 4

Safety ... 4
 Dymax UV Light-Curing System Safety Considerations ... 6

Product Overview ... 8
 Description of the BlueWave LED Prime UVA ... 8
 Intensity Control Feature .. 9
 Validation .. 9

Assembly and Setup .. 10
 Unpacking and Inspecting Your Shipment .. 10
 Parts Included in the BlueWave LED Prime UVA Spot Lamp System .. 10
 Installation & System Interconnect ... 11

Operation ... 13

9-Pin Connector I/O Signals .. 14
 Input Signals ... 14
 Output Signals ... 15

Cleaning and Maintenance .. 16
 Lightguide ... 16
 Fan Filter ... 17
 Fuse Replacement .. 17

Troubleshooting ... 18

Frequently Asked Questions .. 19

Spare Parts and Accessories ... 20
 Options/Accessories ... 20
 Spare/Replacement Parts .. 20

Specifications .. 21
 Specifications ... 21

Warranty ... 23

Index .. 23
Introduction

Introduction to the User Guide

The enclosed BlueWave LED Prime UVA Spot-Curing System was developed and manufactured by the Dymax team, driven by a desire to best serve your needs. Before shipping, your BlueWave LED Prime UVA was thoroughly checked and tested for trouble-free performance.

The proper setup and operation of this system will maximize safety and user-friendly performance, providing optimum yield of your technological process.

Therefore, we encourage you to read, understand, and follow all safety and operating instructions and recommendations compiled in this and other related manuals prior to setting up and operating this new spot-lamp system or its individual components.

If you encounter a problem, have any questions, or have a suggestion or recommendation, please contact our Technical or Customer Service Departments at 860-482-1010. Trained Dymax professionals are standing by to serve you.

Par conséquent, nous vous encouragez à lire, comprend, et suivre tout sécurité et instructions d'opération et conséilions rédiger dans cette et autre manuels etablir un lien avant de mettre en place et de faire marcher cette nouveau système de lampe de tache ou cette composants individuel.

Si vous rencontrez un problème, avait n’importe de questions, ou si vous voudrez de nous aider avec tes suggestions ou conseilations, s’il vous plait contacte notre départements technique ou service client à 860-482-1010. Dymax formé professionnels attendre à vous servir.

Intended Audience

Dymax prepared this user guide for experienced process engineers, technicians, and manufacturing personnel. If you are new to UV light-curing systems and do not understand the instructions, contact Dymax Application Engineering to answer your questions before using the equipment.

Where to Get Help

Dymax Customer Support and Application Engineering teams are available in the United States, Monday through Friday, from 8:00 a.m. to 5:30 p.m. Eastern Standard Time. You can also email Dymax at info@dymax.com. Contact information for additional Dymax locations can be found on the back cover of this user guide.

Additional resources are available to ensure a trouble-free experience with our products:

- Detailed product information on www.dymax.com
- Dymax adhesive Product Data Sheets (PDS) on our website
- Material Safety Data Sheets (MSDS) provided with shipments of Dymax adhesives
Safety

Before continuing with the installation, please read the following chapters of this manual for safety recommendations and installation, operation, and troubleshooting instructions.

CAUTION! Always wear protective goggles or face shield when working near the front of the unit, which emits high-intensity visible light!

WARNING! Always observe safety requirements!

CAUTION! Risk of electrical shock if cover is removed!

To use this system safely, it must be set up and operated in accordance with the instructions given by Dymax. The system’s design was developed to maximize operator safety and minimize exposure to UV. Using the system in any other manner will impair the protection of the system. Dymax assumes no liability for any changes that may impair the protection of the system.

Safety Recommendations

- Use the goggles provided or an approved face shield for eye/face protection.
- Long-sleeved shirts or a lab coat are recommended for arm protection. The use of UV opaque gloves will protect the hands.

NOTE: The BlueWave LED Prime UVA emits high-intensity light. Never look directly at the light-emitting end of the lightguide while the unit power is on.

Safety Symbol Index

The following symbols are displayed on the curing system. Please see below for their meanings.

- **Refer to Manual**
- **Eye Protection Required**
- **Warning!**
- **Warning! UV Light Hazard**

Sécurité

PRÉ-CAUTION! Toujours fai:ez de l’usage des lunettes de protection ou protéger de visage marché près du devant d’élément!

AVERTISSEMENT! Remmarquez toujours besoin de sécurité!

PRÉ-CAUTION! Risque de décharge électrique quand le couvert est enlever!
L’équipement est conçu pour être utilisé correctement constituer, avec composants brancher correctement, et marché en conformément avec instructions important. Le plan étas developer pour render au maxime opérateur sécurité et minimiser exposition à ultraviolette.

Recommander de Sécurité

- Emploi lunettes, ou un protéger de visage pour protection de ultraviolet pour protéger vous œux.
- Chemises à manche long, ou manteau de labo, sont recommander pour protéger les bras, et utilisation de ultraviolet gants opaque vais protéger les mains.

REMARMER: Avec le filtre intérieur installé, l’Onde Bleu émettre lumière. Ne jamais regardez directement à la source de lumière pendant que l’élément est en opération.

Dymax UV Light-Curing System Safety Considerations

Dymax light-curing technology has been used successfully for over 30 years. The fast cure, one-component nature of our curing technology has made it the process of choice for many manufacturers requiring a “Cure on Demand” assembly process. There are four common questions/concerns related to light-curing systems: UV exposure, high-temperature surfaces, ozone, and bright, visible light.

NOTE: The energy emitted from the Dymax BlueWave LED Prime UVA spot-curing system is in the upper end of the UV portion of the spectrum. To ensure that all safety aspects regarding operations of this equipment are addressed, please review and follow information and safety information listed below.

UV Exposure

Figure 1. UV Spectrum

Standard Dymax UV-curing systems have been designed to primarily emit UVA light (as shown in Figure 1). UVA light is generally considered the safest of the three UV ranges: UVA, UVB, and UVC. Although OSHA does not currently regulate ultraviolet-light exposure in the workplace, the American Conference of Governmental Industrial Hygienists (ACGIH) does recommend Threshold Limit Values (TLV’s) for ultraviolet light. The strictest interpretation of the TLV (over the UVA range) for workers’ eyes and skin is 1 mW/cm² (intensity), continuous exposure. Unless workers are placing bare hands into the curing area, it is unusual to exceed these limits. To put the 1 mW/cm² limit into perspective, cloudless summer days in Connecticut regularly exceed 3 mW/cm² of
UVA light, which includes the more dangerous UVB light, primarily responsible for sun tans, sun burns, and skin cancer.

Checking the Workstation

The human eye cannot detect “pure” UV light. A radiometer should be used to measure stray UV light to confirm the safety of a UV-curing process. A workstation that continuously exposes an operator to more than 1 mW/cm² of UVA light should be redesigned.

Protecting Operators

Light-curing technology can be a regulatory compliant, "worker-friendly" manufacturing process when the proper safety equipment and operator training is utilized. There are two ways to protect operators from UV exposure: shield the operator and/or shield the source.

Shield the Operator — UV-Blocking Eye Protection - UV-blocking eye protection is recommended when operating UV light-curing systems. Both clear and tinted UV-blocking eye protection is available from Dymax.

UV-Blocking Skin Protection — Where the potential exists for UV exposure upon skin, opaque UV-blocking clothing, gloves, and full-face shields are recommended.

Shield the Source of UV

Any substrate that blocks UV light can be used as a shield to protect workers from stray UV light. The following materials can be used to create simple shielding structures:

- **Sheet Metal** — Aluminum, steel, stainless steel, etc. Sheet metal should be coated black or black anodized to minimize reflection of UV and visible light toward operators.

- **Rigid Plastic Film** — Transparent or translucent/UV-blocking plastics (typically polycarbonate or acrylic) are commonly used to create shielding where some level of transparency is also desired.

- **Flexible Film** — Translucent UV-blocking, flexible urethane films can be used to quickly create workstation shielding. This UV-blocking, flexible urethane film is available from Dymax. Call for assistance.

High-Temperature Surfaces

Surfaces exposed to high-intensity curing lights will rise in temperature. The intensity, distance, exposure time, cooling fans, and the type/color of the surface can all affect the actual rise in surface temperature. In some cases, exposed surfaces can reach temperatures capable of producing a burn or causing damage to a substrate. In these cases, care must be taken to ensure either a more moderate surface temperature or appropriate protection/training for operators. No infrared radiation is produced by these LED systems, so surface temperatures will be lower than with conventional lamp systems. Empirical testing should be used to verify the exact temperature rise in each application.

Ozone

The Dymax BlueWave LED Prime UVA does not generate UVB or UVC, therefore no ozone is generated while operating this equipment.
Bright, Visible Light

The bright, visible light energy emitted by curing systems can cause eye strain if proper eye protection or shielding is not used. The proper use of tinted eye protection and/or opaque/tinted shielding can be utilized to reduce eye strain and address this concern.

Summary

UV-light sources can be more “worker friendly” than many commonly accepted industrial processes, provided the potential concerns are addressed. Both the lower working temperature and lack of spurious frequency transmission that this system produces make it even more user friendly. Contact your Dymax representative for information regarding the proper use of Dymax curing systems.

Product Overview

Description of the BlueWave LED Prime UVA

The BlueWave LED Prime UVA is a light-curing spot lamp that generates curing energy using high-intensity Light Emitting Diodes (LEDs). The relatively narrow frequency band produced by LEDs generates cooler curing temperatures and makes the BlueWave LED Prime UVA an excellent choice for spot curing various coatings and adhesive bonding of polycarbonate, PVC, PET, metal, glass, and many other substrates. LED light-curing systems offer many advantages over conventional spot-curing systems including no bulbs to change, cooler cures, no warm-up, and constant intensity for thousands of hours. The BlueWave LED Prime UVA is rated for continuous operation and can run in either timed or manual operating modes. The power supply operates on line voltages of 100 to 240 VAC, 50/60 Hz.

The BlueWave LED Prime UVA unit is comprised of an anodized aluminum housing which contains an electronic power supply, circuit protection, an LED assembly, cooling fans, a lightguide mount, a lightguide safety interlock, and a control PCB with connections for a remote operation system. Cooling fans are provided to keep the housing and internal components of the unit at the optimum operating temperature. The fan filter should be changed or cleaned frequently to prevent blockage and reduced ventilation airflow. The air vents must not be covered or otherwise blocked. A thermal shutdown sensor is provided for internal temperature control of the unit.

The unit’s curing energy is emitted from a lightguide. This guide can be hand-held for complete mobility, fixtured into position for repetitive operations, or mounted to automated equipment. The lightguide is separate from the unit and plugs into the lightguide mount on the front panel of the unit.

WARNING! Insert the lightguide into the lightguide mount before the light is turned on, and remove the lightguide ONLY AFTER the light is turned off. To secure the lightguide, lightly tighten the set screw (located on the top of the lightguide mount) after the lightguide is inserted. If the lightguide is removed at any time during an exposure cycle, the power is removed from the LED immediately. Replacing the lightguide will automatically re-energize the LED.

The unit also features an intensity control on the front panel, which allows operators to adjust the output intensity during process validation and production. Users can adjust and maintain the output intensity level from 0 - 100% to meet their process curing parameters.
Intensity Control Feature

The components used in all curing systems degrade with use. Intensity, therefore, decreases as the system ages. The BlueWave LED Prime UVA’s intensity control allows for compensation to address this slow degradation. Users can eliminate this variation by manually increasing output intensity to offset this degradation. The intensity can be adjusted with a tool as shown in Figure 2. The intensity adjustment is a 10-turn potentiometer and allows fine control of output intensity. This feature is useful for both validation and control.

Figure 2. Intensity Adjustment

Validation

Tests should be conducted prior to production to determine the time and light intensity required to fully cure your light-curable material in your specific application. The following approaches may be used to validate the curing process.

Set Exposure Time, Determine Intensity

Users can specify a cure time, and through empirical testing, determine the intensity required to achieve a full cure. As with any manufacturing process, it is advisable to incorporate a safety factor.

Set Intensity, Determine Exposure Time

Users can specify light intensity and through empirical testing, determine the exposure time required to achieve a full cure. As with any manufacturing process, it is advisable to incorporate a safety factor.

Control

Process validation confirms a minimum acceptable intensity. Users can then choose to operate at a higher available intensity level (using the additional intensity as a cure safety factor) or adjust the output to a specific intensity level. To insure consistent and repeatable process results, it is advisable to monitor intensity levels with the use of a radiometer. This allows identification of any potential maintenance requirements or intensity adjustment necessary.
Assembly and Setup

Unpacking and Inspecting Your Shipment

Your BlueWave LED Prime UVA arrived in one or two boxes. Inspect the boxes for damage and notify the shipper of box damage immediately.

Open each box and check for equipment damage. If parts are damaged, notify the shipper and submit a claim for the damaged parts. Contact Dymax so that new parts can be shipped to you immediately.

Check that the parts included in your order match those listed below. If parts are missing, contact your local Dymax representative or Dymax Customer Support to resolve the problem.

Figure 3. BlueWave LED Prime UVA Components

Parts Included in the BlueWave LED Prime UVA Spot Lamp System

- BlueWave LED Prime UVA (1)
- Footswitch (2)
- 5-mm Lightguide – Models 40321 Only (3)
- UV Protection Goggles (4)
- 2-mm Hex Wrench (5) – Model 40321 Only
- Flat Blade Screwdriver (6) – Model 40321 Only
- BlueWave LED Prime UVA User Guide (7)
- Snap-In Clip – Model 40321 Only
- Filter Media (80mm 45 PPI) – Model 40321 Only
- Power Cord (8)
 - Model 40321 & 40322 - Standard 120V North American Power Cord
 - Model 40950 - Type G Plug
 - Model 40960 – No Power Cord (Note: For European customers, the appropriate power cord will be added)
Installation & System Interconnect

1. Connect the Power Cord to the rear of the unit and plug into a grounded wall outlet.

2. Connect the Footswitch to the connection in the rear of the unit.

 Figure 4. Rear Panel Cable Connections

3. Install the Lightguide:

 - Remove the protective cover from the unit’s Lightguide Mount.
 - Remove the protective end caps from the Lightguide.
 - Visually inspect the two ends of the Lightguide to verify that no foreign material is present.

 NOTE: Dymax liquid-filled lightguide ends can be cleaned with isopropyl alcohol to remove foreign material and outgassing deposits.

 - Fully insert the large end of the Lightguide into the Lightguide Mount on the front panel.

 NOTE: When properly seated, a light “click” may be heard/felt.

 Figure 5. Lightguide Mount Set Screw
If desired, the Lightguide may be fastened into place by lightly tightening the Securing Set Screw in the top of the Lightguide Mount. A Hex Wrench is provided with the unit for this purpose. The Set Screw should be tightened gently to prevent damaging the Lightguide.

NOTE: Multi-pole lightguides should be checked for leg-to-leg output uniformity. Rotate the lightguide to verify the desired intensity of each leg before tightening the set screw.

The Lightguide is now installed and ready for use. The end of the Lightguide should be periodically cleaned with isopropyl alcohol. Adhesive build-up may be removed from the end of the Lightguide by gently scraping using a razor blade or razor knife.

4. Turn the Power Switch to the on position.

5. There is no need to allow any warm-up or cool down times with this LED system. The unit may be powered down and powered up again immediately without causing any negative effects.

6. Activate an exposure cycle by pressing on the Footswitch. With the Timer/Manual Selector Switch (located on the front panel of the unit) in the manual position, the exposure time is controlled directly from the Footswitch. In the timed position, operation is determined by the setting displayed on the electronic timer. Simply push the timer setting buttons to enter the desired number of seconds the LED needs to be powered.

7. With the system exposure active, adjust the Intensity Adjustment Screw as required to achieve the desired output intensity on an appropriate radiometer. The Intensity Adjustment Screw is a 10-turn potentiometer.

Figure 6. Intensity Adjustment Screw
Operation

The *BlueWave LED Prime UVA* will arrive almost fully assembled. Please refer to the installation section of this manual for installation of the lightguide, power cord, and footswitch. The system should be positioned in a dry location that does not obstruct airflow around the unit.

IMPORTANT: To ensure that exposure output of the system is obtained, be sure that the lightguide is fully inserted and seated into the entrance fitting prior to tightening the set screw. Be sure to lightly tighten the set screw to ensure the lightguide remains in place during use.

To energize the system, turn the main power switch from the “O” position to the “I” position; the power supply and timer should begin to function.

![Figure 7. Main Power Switch](image)

![Figure 8. Timer](image)

CAUTION: Always wear protective goggles or a face shield when working near UV or bright visible light. Never look directly at the light-emitting end of a lightguide.

The timer located on the front panel of the *BlueWave LED Prime UVA* is factory set to the most common operating mode and recommended operation of the timer with the *BlueWave LED Prime UVA*.

The front panel of the timer contains an LED display and keypad. The LED display has a reset indicator, key-protect indicator, output indicator, preset value, set value, and timing operation indicator.

A brief description of each display and location:

- **Output Indicator** - Displays OUT in upper left corner of timer display. Displayed when relay is switched on; is not displayed when relay is switched to off.
- **Present Value** – Four-digit segmented display in center of timer. Shows current status of time.
- **Set Value** – Four-digit segmented display in lower right corner of timer. Shows set length of time.
- **Reset Indicator** – Display on the left of meter face. Active when the timer is reset by pressing the “RST” button on the lower left face of timer. Or when the rear panel PLC Safety Interlock is active.
- **Key Protect** – Located on center left side of display. Will always be lit because the timer function is programmed at the factory and locked before shipment.
To operate the timer, select the “timer” option of the Timer/Manual Selector Switch on the front panel. Program the time into the Timer and depress the Footswitch. Factory settings will power the LED and the preset value will begin to count backward. When the Timer reaches 00.00, it will reset the value to the set value and remove power from the LED. The Timer can be stopped by pressing the RESET button on the lower left face of the Timer. If power is removed from unit, the Timer will reset to the set value.

To select the time, press the appropriate key (up or down) until the corresponding digit increments or decrements in the set value. By pressing the up key labeled (1), it will increment the left most digit on the set value. By pressing the up key (2), it will increment the second digit of the set value. The same will happen with the up key (3) and the third digit of the set display, and up key (4) and the fourth digit of the set display. The Timer will increment from 9 back to 0. The Timer comes programmed for a range of 00.01 seconds to 99.99 seconds. Consult the factory for other time ranges and function options available.

The LED does not employ an automatic life-end shutdown circuit. The only condition that may shut off the LED would be an over-temperature shutdown. If an over-temperature shutdown occurs, check that the airflow is not restricted to the system and that the fan filter is clean. If the condition persists, consult the factory for further assistance. If the lightguide is not fully seated into the unit, or if it becomes dislodged by as little as ⅛” from the Lightguide Mount, the Safety Interlock built into the assembly will terminate power to the LED. Re-seating the lightguide will automatically re-activate it. No user-serviceable parts exist within the enclosure.

Position the curing end of the lightguide no closer than ¼” from material being cured. Placing the lightguide end too close can cause the lightguide to become cloudy from vapors coming off of the curing material.

In a typical bulb-based system, lamp life is reduced each time it is started. The new LED-based systems have no such limitations. They can be shut off and then immediately restarted with no cool-down or warm-up periods or loss of system lifetime.

9-Pin Connector I/O Signals

The BlueWave LED Prime UVA unit is equipped with a 9-pin D-subminiature connector that provides interface between the device and a PLC or similar factory control equipment. The following describes available inputs and outputs.

Input Signals

Each input signal is optically isolated from the internal circuit of the BlueWave LED Prime UVA. A positive +24V and maximum 10-milliamp current source is required to activate each signal input. All inputs are returned to the common terminal, and have built-in current-limiting resistors to protect the isolators.

Pin 1 – +24V: Applying power to this pin enables the Safety Interlock (4). The safety interlock will not function unless +24V is applied to this pin.

Pin 2 – Common: All signals, both inputs and outputs, are returned to this pin. Common may be used independently of +24V for all outputs and inputs, except for the safety interlock (4) input.

Pin 3 – Shutter In: This signal line may be used to remotely activate the BlueWave LED Prime UVA. When it is being used, the local footswitch on the rear of the BlueWave LED Prime UVA box is still capable of operating
the unit. Similar to the footswitch, if the timer/manual selector switch is in Timer Mode, the unit will power the LED for the time set on the timer. In the Manual Mode, the unit will power the LED for the duration of the remote activate signal.

Pin 4 – Safety Interlock In: A safety interlock can be connected between Pins 1 and 4. While +24V is applied to Pin 4, the system will allow activation of the LED. If the connection is broken, power is immediately removed from the LED. The safety interlock relies on the +24V signal being present on Pin 1. In addition to removing power from the LED, if the system is being operated in the TIMED mode, breaking this connection will reset the timer to zero. A second “shutter” signal will reactivate the LED for the timed duration.

Pin 5 – Intensity In (PWM): This input is supplied as a means to actively control the output intensity of the BlueWave LED Prime UVA unit. It can be used to Pulse Width Modulate (PWM) the power to the LED. This input cannot increase the intensity over the set point of the front panel intensity adjustment, but can only reduce it. The front panel adjustment should be set fully clockwise to give Pin 5 the greatest range.

A high level (+24V) on Pin 5 will turn off the LED and a low level (0V) will allow maximum LED intensity. A signal of 1. K Hz should be used with a duty cycle of 0 to 60%.

NOTE: A 10% duty cycle will generate a greater intensity than a 50% duty cycle.

This input can be used with an external controller to create any number of customized step-cure profiles or with an additional sensor to regulate the output.

Output Signals

The output signals are all opto-isolated signals. Each signal has an NPN output transistor. The emitters of all output transistors are tied together and connected to the PLC common on DB9 Pin 2. Each individual output signal line is connected to the collector of each transistor. When the transistor is turned on, this provides a ground to the PLC system that can be used to enable a relay coil signal to an opto-coupler. The conducting transistor can also function as a set of contacts that can initiate actions within the PLC. When the transistor is on, the signal is said to be “enabled” or “asserted”. When the transistor is off, the signal is said to be “disabled” or “unasserted”. The transistors have a max current rating of 30 mA, and a max power rating of 150mW. Only positive voltages with respect to the PLC common should be used to a maximum of 24 Volts DC. Series-limiting resistors should be used to ensure that the max conditions are not exceeded.

Pin 6 – Lightguide Engaged Out: When a lightguide is fully inserted into the unit, an internal switch will allow the LED to operate. The same switch will send a signal to turn on the transistor and connect Pin 6 to Pin 2. This output can be used to verify the condition of the system, should an error occur, or alert a user to the failure.

Pin 7 – LED Powered Out: Pin 7 will be shorted to Pin 2 when the LED power supply is powered up and the set point is above a predetermined level. Pin 7 will be open with respect to Pin 2, if the LED power supply is off for any reason. This output can be used as go/no go confirmation that the array power supply is engaged. Note: Verification of LED illumination should be made visually to ensure proper operation.

Pin 8 – Intensity Out (PWM): An internal circuit monitors the current sent to the LED, and generates a PWM signal whose frequency and duty cycle varies with the current. Adjusting the front panel Intensity Adjustment Screw, or using the Intensity Input on Pin 5, will cause a change in the signal seen on Pin 8. This output can be
used to verify step or ramped changes in the intensity for customized profiles, or to alert the remote controller when the system has reached maximum intensity in a closed-loop system.

Pin 9 – Over Temp Out: A sensor constantly monitors the temperature of the LED in the system. If, for any reason, the reading rises above a predetermined limit, the control PCB will shut off current to the LED to prevent damage. When the measured temperature drops to a lower threshold, the PCB will re-enable current to the LED.

NOTE: If this fault occurs check for proper airflow into and out of the unit. Also verify that the air filter is clean.

Figure 9. 9-Pin D Connector I/O Signals

Cleaning and Maintenance

The *BlueWave LED Prime UVA* was designed to operate with minimum maintenance. Follow the schedule below to assure top unit performance.

Lightguide

Clean the lightguide ends monthly or as required. The ends of the lightguide should be kept clean to transmit as much light as possible. Cured adhesive can carefully be removed from liquid-filled lightguide ends with a
razor blade. Avoid sharp bends with the lightguide since this reduces light output and permanently damages the guide.

Fan Filter

The external fan filter should be inspected and cleaned periodically to prevent dust buildup from affecting airflow through the unit. Spare filters are provided with each unit. The fan filters are washable and may be reused. Remove the fan filter by removing the snap-on cover from the rear of the fan.

Figure 10. Cooling Fan Filter & Cover

![Cooling Fan Filter & Cover](image)

Fuse Replacement

The unit is supplied with two Fuses that are installed in the Power Receptacle. To remove the Fuses, unplug the unit and remove the Fuse Holder with a small screwdriver. Remove the Fuses from the Fuse Holder and install new Fuses. Replace the Fuses with 2.0 Amp fast-blow types (Dymax PN 37236 or equivalent). Reinstall the Fuse Holder into the Power Receptacle.

Figure 11. Power Receptacle Figure 12. Fuse Holder Figure 13. Fuses (PN 37236)

![Power Receptacle](image) ![Fuse Holder](image) ![Fuses](image)
Troubleshooting

WARNING: Only qualified maintenance personnel should attempt the following procedures.

AVERTISSEMENT: Seulement personnel d’entretien diplomé devrais essayer les procedures suivant.

Table 1. Troubleshooting Chart for BlueWave LED Prime UVA

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Cause</th>
<th>Testing</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>The unit’s LED will not illuminate</td>
<td>There is an incorrect connection</td>
<td>Visually inspect all input/output connections (i.e. power cord, foot switch, lightguide).</td>
<td>Secure all connections.</td>
</tr>
<tr>
<td></td>
<td>The main line fuse is blown (nothing in unit operates)</td>
<td>Remove the fuse from the power receptacle and check it with an ohmmeter.</td>
<td>Replace the fuse if defective.</td>
</tr>
<tr>
<td></td>
<td>The lightguide is not fully inserted</td>
<td>Remove the lightguide.</td>
<td>Re-insert the lightguide into the lightguide mount.</td>
</tr>
<tr>
<td>The unit has low output intensity or The unit fails to cure the material in the allotted time</td>
<td>The intensity adjustment is set too low</td>
<td>Use a radiometer (Dymax ACCU-CAL 50-LED) to measure the output intensity.</td>
<td>Adjust the setpoint to the desired intensity.</td>
</tr>
<tr>
<td></td>
<td>The transmission loss in the lightguide is too great</td>
<td>Compare the lightguide output against a new lightguide or use a Dymax lightguide simulator to determine the transmission loss.</td>
<td>Replace the lightguide.</td>
</tr>
<tr>
<td></td>
<td>There are contaminants on the lightguide</td>
<td>Visually examine ends of lightguide for contaminants.</td>
<td>Clean the lightguide ends with isopropyl alcohol or an equivalent. Heavy deposits on liquid lightguides may be carefully removed using a razor blade. Replace the lightguide if it cannot be cleaned.</td>
</tr>
<tr>
<td></td>
<td>The system has inadequate cooling</td>
<td>Check the air filter for debris and blockages at the exit vents.</td>
<td>Clean or replace the filter. Remove all air blockages from around the unit.</td>
</tr>
<tr>
<td></td>
<td>The footswitch is not operating</td>
<td>Check the connection of the footswitch into the unit.</td>
<td>Re-insert the footswitch into the unit.</td>
</tr>
</tbody>
</table>
Frequently Asked Questions

Q.) My BlueWave LED Prime UVA will not turn on.
 A. Check the power cord connection.
 B. Check the fuses located where the power cord plugs into the unit.

Q.) The LED will not light, but the unit is powered up.
 A. Check that the lightguide is fully seated in the lightguide mount.
 B. Confirm that the intensity adjustment is not at the minimum setting.
 C. Check the condition of the signals on the DB9 connector (+24V, Safety Interlock, and Intensity Input)

Q.) I have low intensity.
 A. The end of the lightguide may have a build-up of adhesive. Carefully remove any build-up with isopropyl alcohol or for heavier deposits gently scrape it with a razor blade.
 B. The condition of the lightguide can also affect the intensity. All lightguides degrade with time, but intensity will also drop if the lightguide is bent or compressed. The intensity reading from the lightguide should be compared to the intensity reading from a lightguide simulator to determine the efficiency.
 C. The intensity adjustment is set incorrectly. Turn the knob fully clockwise for the maximum intensity out.
 D. The connections or signals applied to the DB9 connector are incorrect. Verify that the safety and intensity input lines are not shutting down current to the LED.

Q.) Why does my BlueWave LED Prime UVA unit seem to run very hot?
 A. Replace the fan filter media on the intake fan (located on the back panel). This is your first line of defense against airborne dust and debris. This filter media and several spares are supplied with new units and should be changed regularly.
 B. Ideal operation of this equipment suggests at least 6 inches of clearance around the unit for proper ventilation. Also confirm that the intake fan is not feeding from the exhaust of other equipment.
 C. Confirm that the fan is operating.
 D. Your equipment may already be full of dust and debris, causing over heating of the unit’s internal electronics.

 NOTE: The internal fans do not activate until required. If the setting of the intensity output is low or if the ambient air temperature is lower than normal, the fans may not be active or they may take longer than usual to engage.
Spare Parts and Accessories

Options/Accessories

<table>
<thead>
<tr>
<th>Item</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal Protection Equipment</td>
<td></td>
</tr>
<tr>
<td>Protective Goggles — Green</td>
<td>35286</td>
</tr>
<tr>
<td>Protective Goggles — Gray (standard model included with unit)</td>
<td>35285</td>
</tr>
<tr>
<td>Face Shield</td>
<td>35186</td>
</tr>
<tr>
<td>Radiometer</td>
<td></td>
</tr>
<tr>
<td>Dymax ACCU-CAL™ 50-LED Radiometer (spot)</td>
<td>40505</td>
</tr>
<tr>
<td>Lightguides</td>
<td></td>
</tr>
<tr>
<td>Lightguide Simulator, 5 mm</td>
<td>38408</td>
</tr>
<tr>
<td>Liquid-D Lightguide, 5 mm x 1 M</td>
<td>5720</td>
</tr>
<tr>
<td>Liquid-D Lightguide, 5 mm x 1.5 M</td>
<td>5721</td>
</tr>
<tr>
<td>Liquid-D Lightguide, 8 mm x 1 M</td>
<td>5722</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>Carry Case with Foam Inserts</td>
<td>1-40009</td>
</tr>
<tr>
<td></td>
<td>1-40010</td>
</tr>
<tr>
<td></td>
<td>2-40011</td>
</tr>
<tr>
<td></td>
<td>1-40012</td>
</tr>
</tbody>
</table>

Spare/Replacement Parts

<table>
<thead>
<tr>
<th>Item</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuses</td>
<td></td>
</tr>
<tr>
<td>Fuses: F2.0 amp</td>
<td>37236</td>
</tr>
<tr>
<td>Fan</td>
<td></td>
</tr>
<tr>
<td>Fan</td>
<td>40034</td>
</tr>
<tr>
<td>Fan Assembly</td>
<td>40004</td>
</tr>
<tr>
<td>Fan Filter and Holder</td>
<td>40460</td>
</tr>
<tr>
<td>Fan Filter Media</td>
<td>40008</td>
</tr>
<tr>
<td>Footswitch and AC Power Cords</td>
<td></td>
</tr>
<tr>
<td>Footswitch</td>
<td>40402</td>
</tr>
<tr>
<td>Power Cord, North American</td>
<td>35255</td>
</tr>
<tr>
<td>Power Cord, China Type G Plug</td>
<td>40542</td>
</tr>
<tr>
<td>Tools & Hardware</td>
<td></td>
</tr>
<tr>
<td>2 mm Hex Wrench</td>
<td>38656</td>
</tr>
<tr>
<td>Flat Blade Screwdriver</td>
<td>39695</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>Rubber Feet</td>
<td>5039</td>
</tr>
</tbody>
</table>
Specifications

Part Numbers

<table>
<thead>
<tr>
<th>Part Numbers</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>40321</td>
<td>North American Version (standard 120V plug) with 5-mm lightguide #5720</td>
</tr>
<tr>
<td>40322</td>
<td>North American Version (standard 120V plug) without lightguide</td>
</tr>
<tr>
<td>40950</td>
<td>Asian Version (Type G plug) without lightguide</td>
</tr>
<tr>
<td>40960**</td>
<td>Unit without a power cord or lightguide</td>
</tr>
</tbody>
</table>

Intensity Output*

<table>
<thead>
<tr>
<th>Property</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>>15 W/cm²</td>
</tr>
<tr>
<td>Visible</td>
<td>3-5 W/cm²</td>
</tr>
<tr>
<td>UVA</td>
<td>5-8 W/cm²</td>
</tr>
<tr>
<td>UVB</td>
<td>0 mW/cm²</td>
</tr>
</tbody>
</table>

Power Requirements

- 100-240 V, 50/60 Hz, <100 Watts

Power Supply

- Solid state, 100 Watt

Temperature/Humidity

- 40°C maximum/non-condensing

Timer

- Digital timer up to 99.99 seconds; manual or timed exposure

Activation

- Footswitch or PLC

I/O Port

- 9-Pin D – sub-miniature connector

Signals (PLC Integration)

<table>
<thead>
<tr>
<th>Inputs</th>
<th>+24VDC, activate, safety interlock, output adjust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outputs</td>
<td>LED lit, lightguide inserted, output setpoint, over temperature</td>
</tr>
</tbody>
</table>

Cooling

- Filtered fan arrangement

Housing Dimensions

- 5.4" x 8.5" x 8.8" [13.7 cm x 21.6 cm x 22.3 cm]

Weight

- 5.40 lbs. (2.45 kg)

Unit Warranty

- 1 year from purchase date

Certifications

- CE marked

* Measured with an ACCU-CAL™ 50-LED radiometer and 5 mm x 1,000 mm liquid-filled lightguide.

** Contains the appropriate power cord for Europe

![Figure 14. BlueWave LED Prime UVA Spectral Output](image-url)
Definition of Terms

Light Emitting Diode (LED) – A solid-state, semi-conducting device that generates a specific, narrow-band wavelength of energy.

Intensity, also known as Irradiance – A measure of energy over the unit of surface area (measured in W/cm² or mW/cm²).

Brightness, also known as Luminance – A description of energy in the visible region of the spectrum (approximately 400-700 nm). Brightness is recorded in photometric units. The “Intensity” (see below) of visible light energy is called Illuminance.

Illuminance – Luminous flux (energy of visible light) incident per unit area. Illuminance is measured in Lx (lux) or Lumen/cm².

Ultraviolet (UV) – The invisible region of the spectrum just beyond the violet end of the visible region. Wavelength ranges in general from 1-400 nm. Dymax bulbs (burners) do not radiate energy in deep Ultraviolet; there are very minute amounts below 220 nm and practically nothing can be sensed below 200 nm. This is due to the use of an ozone-blocking quartz bulb envelope (See Ozone).

1. Ultraviolet A (UV-A) - UV of long wavelength from within approximately 400 to 320 nm of the spectral band (4,000 to 3,200®).
2. Ultraviolet B (UV-B) - UV of medium wavelength from within approximately 320-280 nm.
3. Ultraviolet C (UV-C) - UV of short wavelength below 280 nm (typically 280-200 nm) – a large amount of this energy is present in sunlight.
4. Visible – Light that can be seen at 400-700 nm.

Dose – Irradiance integrated over time, or Irradiance (W/cm²) x Time (s) = Dose (Joules/cm²). Note: Watt is the power that gives rise to the production of energy at the rate of 1-joule (J) per second (s).

Ozone – An oxidizing agent (O₃) produced by the action of Ultraviolet radiant energy (below 185 nm) or electrical corona discharge of oxygen on air.

OSHA 1910.145 - “Regulation of Accident prevention Signs and Tags” defines the following headers as:

- **WARNING** – Used when there is a hazardous situation that has some probability of severe injury.
- **CAUTION** - Used to indicate a hazardous situation that may result in minor or moderate injury.
- **NOTICE** - Used to convey a message related directly or indirectly to the safety of personnel or protection of property.

OSHA 1910.145 - “Regulation de la prevention d’accident Signes et Étiquettes” défin les têtes comme:

- **AVERTISSEMENT** - Est utiliser quand il ya un situation hasardeux qu’il avais de probalilité de se blesser sévère.
- **PRE-CAUTION** - Est user pour indiquer un situation hasardeux qu’il peut être en consequence en minuteur ou modére blesure.
- **ATTENTION** - Est user pour communiquer un message lié directement ou indirectement à la sécurité de personnel, ou protection de propriét.
Warranty

From date of purchase, Dymax Corporation offers a one-year warranty against defects in material and workmanship on all system components with proof of purchase and purchase date. Unauthorized repair, modification, or improper use of equipment may void your warranty benefits. The use of aftermarket replacement parts not supplied or approved by Dymax Corporation, will void any effective warranties and may result in damage to the equipment.

IMPORTANT NOTE: Dymax Corporation reserves the right to invalidate any warranties, expressed or implied, due to any repairs performed or attempted on Dymax equipment without written authorization from Dymax. Those corrective actions listed above are limited to this authorization.

Index

Assembly and Setup, 10
Cable Connections, 11
Cleaning, 16
Contact Information, 4
Curing System Safety, 6
Definition of Terms, 22
Frequently Asked Questions, 19
Front Panel Timer, 13
Fuses, 17
Help, 4
I/O Signals, 14
Intensity Control Feature, 8
Maintenance, 16
 Fan Filter, 17
 Fuse Replacement, 17
 Lightguide, 16
Operation, 13
Optional Equipment, 20
Parts Included, 10
Product Overview, 8
Safety, 5
Safety of UV Light
 Bright Visible Light, 7
 High-Temperature Surfaces, 7
 Ozone, 7
 UV Exposure, 6
Sécurité, 5
Spare Parts and Accessories, 20
Specifications, 21
Support, 4
System Connections, 11
Troubleshooting, 18
Unpacking, 10
UV Exposure, 6
UV Light Shielding, 7
Validation, 9
Warranty, 23
Please note that most curing system applications are unique. Dymax does not warrant the fitness of the product for the intended application. Any warranty applicable to the product, its application and use is strictly limited to that contained in Dymax standard Conditions of Sale published on our website. Dymax recommends that any intended application be evaluated and tested by the user to ensure that desired performance criteria are satisfied. Dymax is willing to assist users in their performance testing and evaluation by offering equipment trial rental and leasing programs to assist in such testing and evaluations.